文章信息
文章題目:Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean
期刊:Cell
發(fā)表時(shí)間:2025 年 10 月 1 日
主要內(nèi)容:崖州灣國家實(shí)驗(yàn)室田志喜團(tuán)隊(duì)通過對 8105 份大豆種質(zhì)進(jìn)行全基因組分析,首次明確黑大豆是大豆馴化的關(guān)鍵中間類型,并揭示其逐步馴化路徑與兩大起源中心(黃淮地區(qū)與西北地區(qū))。研究系統(tǒng)解析了大豆在全球傳播過程中的適應(yīng)性基因選擇與中國育種目標(biāo)的時(shí)代變遷,構(gòu)建了首個(gè)大豆 QTN 庫與在線變異數(shù)據(jù)庫,為未來高產(chǎn)、高油、高蛋白大豆的精準(zhǔn)育種提供了重要基因資源與平臺(tái)。
原文鏈接:
https://www.cell.com/cell/fulltext/S0092-8674(25)01038-4
使用TransGen產(chǎn)品:
pEASY?-Uni Seamless Cloning and Assembly Kit (CU101)
ProteinFind? Anti-GFP Mouse Monoclonal Antibody (HT801)
研究背景
現(xiàn)代栽培大豆約在 5000-6000 年前由野生大豆在中國被馴化,隨后逐步傳播至亞洲、歐洲、北美、南美等不同國家和地區(qū),為人類和動(dòng)物提供了主要的植物油脂和蛋白質(zhì)來源,已經(jīng)成為全球最重要的糧油作物之一。作為重要的豆科作物,大豆在長期馴化、傳播和改良過程中,其種質(zhì)資源在世界各地逐漸形成了豐富的多樣性,在植株形態(tài)、生態(tài)適應(yīng)性、生產(chǎn)特性等方面都發(fā)生了巨大變化和分化。然而,關(guān)于大豆種質(zhì)資源演化的一些重要問題并不清楚,解析大豆種質(zhì)資源遺傳基礎(chǔ),深刻理解性狀形成的決定基因,對大豆種質(zhì)資源利用和優(yōu)良品種培育具有重要意義。
文章概述
研究團(tuán)隊(duì)全面調(diào)查了 8105 份大豆材料的進(jìn)化軌跡,包括野生近緣種、地方品種和改良品種,以闡明大豆馴化、傳播和改良的過程。研究發(fā)現(xiàn)黑大豆是大豆馴化歷史上的一個(gè)重要中間體,并揭示了性狀和基因的逐步選擇。還闡明了所選基因在大豆傳播和改良中的等位基因多樣性。此外,構(gòu)建了一個(gè)包含 8105 份大豆材料的變異圖譜,并建立了一個(gè)大豆數(shù)量性狀核苷酸 (QTN) 文庫和一個(gè)選定基因的在線遺傳變異數(shù)據(jù)庫。本研究繪制了一幅清晰的大豆在馴化、傳播、改良過程中的關(guān)鍵基因選擇的地理和歷史性“畫卷”圖譜,并提出了新的大豆起源假說。相關(guān)發(fā)現(xiàn)不僅為理解作物馴化與改良的一般規(guī)律提供了新的視角,也為充分利用種質(zhì)資源開展分子設(shè)計(jì)育種奠定了堅(jiān)實(shí)的理論基礎(chǔ)和數(shù)據(jù)平臺(tái)。
大豆的馴化、傳播與改良過程
全式金生物產(chǎn)品支撐
優(yōu)質(zhì)的試劑是科學(xué)研究的利器。全式金生物的通用版同源重組無縫克隆試劑盒(CU101)、抗 GFP 標(biāo)簽鼠克隆抗體(HT801)助力本研究。產(chǎn)品自上市以來,憑借優(yōu)異的性能,深受客戶青睞,多次榮登知名期刊,助力科學(xué)研究。
pEASY?-Uni Seamless Cloning and Assembly Kit(CU101)
本產(chǎn)品利用特殊的重組酶和同源重組的原理,可以將任意方法線性化后的載體和與其兩端具有 15-25 bp 重疊區(qū)域的 PCR 片段定向重組,可以實(shí)現(xiàn)最多 15 個(gè)片段的高效無縫拼接。
產(chǎn)品特點(diǎn)
? 陽性率高,克隆數(shù)多。
? 高效連接:最高可實(shí)現(xiàn) 15 個(gè)片段無縫連接。
? 快速重組:5-15 min 即可完成反應(yīng)。
? 大容量組裝:可成功構(gòu)建 31.8 kb 的質(zhì)粒 (載體+片段)。
? 長載體組裝:支持 14 kb 長載體組裝。
? 廣譜兼容:支持低濃度 (0.003 pmol) 單片段、多片段高效連接。
ProteinFind? Anti-GFP Mouse Monoclonal Antibody(HT801)
抗 GFP 標(biāo)簽鼠單克隆抗體為高純度的抗小鼠單克隆抗體,屬 IgG1 同型,免疫原為人工合成的全長 GFP 蛋白。
產(chǎn)品特點(diǎn)
? 高純度的抗小鼠單克隆抗體,特異性強(qiáng)。
? 高度特異識別重組蛋白 C 末端或 N 末端的 GFP 標(biāo)簽。
? 適用于定性或定量檢測 GFP 融合表達(dá)蛋白。
使用 pEASY?-Uni Seamless Cloning and Assembly Kit(CU101)產(chǎn)品發(fā)表的部分文章:
? Xu Y, Zhu T F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs[J]. Science, 2022.(IF 63.71)
? Zhu Z, Wang Y, Liu S, et al. Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean[J]. Cell, 2025.(IF 42.50)
? Shi J, Mei C, Ge F, et al. Resistance to Striga parasitism through reduction of strigolactone exudation[J]. Cell, 2025.(IF 42.50)
? Bai X, Sun P, Wang X, et al. Structure and dynamics of the EGFR/HER2 heterodimer[J]. Cell Discovery, 2023.(IF 38.07)
? Wang H, Yang J, Cai Y, et al. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit[J]. Protein & Cell, 2024.(IF 21.10)
? Xu J, Liang Y, Li N, et al. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism[J]. Nature Cell Biology, 2024.(IF 17.30)
? Li B, Zhu L, Lu C, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity[J]. Nature communications, 2021.(IF 14.92)
? Shi C, Yang X, Hou Y, et al. USP15 promotes cGAS activation through deubiquitylation and liquid condensation[J]. Nucleic Acids Research, 2022.(IF 14.90)
? Wang J, An Z, Wu Z, et al. Spatial organization of PI3K-PI (3, 4, 5) P3-AKT signaling by focal adhesions[J]. Molecular Cell, 2024.(IF 14.50)
? Liu S, Fan L, Liu Z, et al. A Pd1–Ps–P1 feedback loop controls pubescence density in soybean[J]. Molecular plant, 2020.(IF 12.08)
? Jin Q, Yang X, Gou S, et al. Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression[J]. Science China Life Sciences, 2022.(IF 10.37)
? Mu S, Chen H, Li Q, et al. Enhancing prime editor flexibility with coiled-coil heterodimers[J]. Genome Biology, 2024.(IF 10.10)
? Du G, Xiong L, Li X, et al. Peroxisome elevation induces stem cell differentiation and intestinal epithelial repair[J]. Developmental cell, 2020. (IF 10.09)
? Tang Y, Gao C C, Gao Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental cell, 2020.(IF 10.09)
使用 ProteinFind? Anti-GFP Mouse Monoclonal Antibody(HT801)產(chǎn)品發(fā)表的部分文章:
? Wu M, Bian X, Huang B, et al. HD-Zip proteins modify floral structures for self-pollination in tomato[J]. Science, 2024.(IF 56.90)
? Zhu Z, Wang Y, Liu S, et al. Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean[J]. Cell, 2025.(IF 42.50)
? Zeng R, Shi Y, Guo L, et al. A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize[J]. Cell, 2025.(IF 42.50)
? Ma X J, Wang W, Zhang J Y, et al. NRT1.1B acts as an abscisic acid receptor in integrating compound environmental cues for plants[J]. Cell, 2025.(IF 42.50)
? Li Y, Zhang Z, Chen J, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J]. Nature, 2018.(IF 41.00)
? Zhao S, Makarova K S, Zheng W, et al. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division[J]. Nature Microbiology, 2024.(IF 28.30)
? Fan H, Quan S, Ye Q, et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant, 2023.(IF 27.50)
? Shi Q, Xia Y, Wang Q, et al. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize[J]. Molecular plant, 2024.(IF 17.10)
? Wang J D, Wang J, Huang L C, et al. ABA-mediated regulation of rice grain quality and seed dormancy via the NF-YB1-SLRL2-bHLH144 Module[J]. Nature Communications, 2024.(IF 14.70)
? Jia X, Lin L, Guo S, et al. CLASP-mediated competitive binding in protein condensates directs microtubule growth[J]. Nature Communications, 2024.(IF 14.70)
? Chang J, Wu S, You T, et al. Spatiotemporal formation of glands in plants is modulated by MYB-like transcription factors[J]. Nature Communications, 2024.(IF 14.70)
? Zhang H, Huang C, Gao C, et al. Evolutionary-Distinct Viral Proteins Subvert Rice Broad-Spectrum Antiviral Immunity Mediated by the RAV15-MYC2 Module[J]. Advanced Science, 2025.(IF 14.30)
? Du D, Li Z, Jiang Z, et al. The Transcription Factor WFZP Interacts with the Chromatin Remodeler TaSYD to Regulate Root Architecture and Nitrogen Uptake Efficiency in Wheat[J]. Advanced Science, 2025.(IF 14.10)
? Meng T, Chen X, He Z, et al. ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity[J]. Molecular Psychiatry, 2023.(IF 13.43)
? Li Y, Du Y, Huai J, et al. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis[J]. The Plant Cell, 2022.(IF 12.00)
? Shen S Y, Ma M, Bai C, et al. Optimizing rice grain size by attenuating phosphorylation-triggered functional impairment of a chromatin modifier ternary complex[J]. Developmental Cell, 2024.(IF 11.80)
? Du D, Li Z, Yuan J, et al. The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat[J]. Science Advances, 2024.(IF 11.70)